Inorg. Chem. 2007, 46, 2674–2681

Monodisperse and Core–Shell-Structured SiO₂@YBO₃:Eu³⁺ Spherical Particles: Synthesis and Characterization

Cuikun Lin, Deyan Kong, Xiaoming Liu, Huan Wang, Min Yu, and Jun Lin*

Key laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, and Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China

Received December 5, 2006

 $Y_{0.9}Eu_{0.1}BO_3$ phosphor layers were deposited on monodisperse SiO₂ particles of different sizes (300, 570, 900, and 1200 nm) via a sol-gel process, resulting in the formation of core-shell-structured SiO₂@Y_{0.9}Eu_{0.1}BO₃ particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence (CL) spectra as well as lifetimes were employed to characterize the resulting composite particles. The results of XRD, FE-SEM, and TEM indicate that the 800 °C annealed sample consists of crystalline YBO₃ shells and amorphous SiO₂ cores, in spherical shape with a narrow size distribution. Under UV (240 nm) and VUV (172 nm) light or electron beam (1–6 kV) excitation, these particles show the characteristic ${}^{5}D_{0}{}^{-7}F_{1-4}$ orange-red emission lines of Eu³⁺ with a quantum yield ranging from 36% (one-layer Y_{0.9}Eu_{0.1}BO₃ on SiO₂) to 54% (four-layer Y_{0.9}Eu_{0.1}BO₃ on SiO₂). The luminescence properties (emission intensity and color coordinates) of Eu³⁺ ions in the core-shell particles can be tuned by the coating number of Y_{0.9}Eu_{0.1}BO₃ layers and SiO₂ core particle size to some extent, pointing out the great potential for these particles applied in displaying and lightening fields.

1. Introduction

The synthesis of nanostructured inorganic materials with hierarchical morphologies has attracted considerable attention in the fields of catalysis, separation technology, microelectronic devices, and biomaterials engineering.^{1–7} In particular, the term core—shell nowadays comprises a huge area of particles that are in the broadest sense defined by a core of matter that is surrounded by a shell of different matter.^{8–11} Core—shell composite materials can act as monodisperse

- (8) Schneider, J. J. Adv. Mater. 2001, 13, 529.
- (9) Zhong, C. J.; Maye, M. M. Adv. Mater. 2001, 13, 1507.
- (10) Fleming, M. S.; Mandal, T. K.; Walt, D. R. Chem. Mater. 2001, 13, 2210.
- (11) Yu, M.; Lin, J.; Fang, J. Chem. Mater. 2005, 17, 1783.
- 2674 Inorganic Chemistry, Vol. 46, No. 7, 2007

spherical particles with good optical performance for applications. There are numerous methods of preparing core—shell structured materials, including vapor deposition, plasma-assisted techniques, chemical reduction, and self-assembly.¹² In most cases, the degree of surface coverage is low and the coating is nonuniform.¹³ The sol—gel process is an effective method for preparing such materials since the reactants can be homogeneously mixed at the molecular level in solution.

On the other hand, phosphor particles with spherical morphology, nonaggregation, and the size $0.5-2 \ \mu m$ can improve the optical performance for field emission displays (FED) and plasma display panels (PDP) because of the high packing density and the reduction of light scattering.^{14,15} Nowadays, many synthetic routes have been developed to control the size and distribution of phosphor particles, such as spray pyrolysis¹⁶ and fluxes precipitation,¹⁷ but the

(16) Cho, S. H.; Yoo, J. S.; Lee, J. D. J. Electrochem. Soc. 1998, 145, 1017.

^{*} To whom correspondence should be addressed. E-mail: jlin@ciac.jl.cn. (1) Radtchenko, I. L.; Sukhorukov, G. B.; Gaponik, N.; Kornowski, A.;

^{Rogach A. L.; Mohwald, H.} *Adv. Mater.* 2001, *13*, 1684.
(2) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. *Nature* 1992, *359*, 710.

⁽³⁾ Yang, H.; Coombs, N.; Ozin, G. A. Nature 1997, 386, 692.

 ⁽⁴⁾ Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.

⁽⁵⁾ Braun, P. V.; Osenar, P.; Stupp, S. I. Nature 1996, 380, 325.

⁽⁶⁾ Liu, J.; Shin, Y.; Nie, Z.; Chang, J. H.; Wang, L. Q.; Fryxell, G. E.;

<sup>Samuels, W. D.; Exarhos, G. J. J. Phys. Chem. A 2000, 104, 8328.
(7) Guo, C. W.; Cao, Y.; Xie, S. H.; Dai, W. L.; Fan, K. N. Chem. Commun. 2003, 700.</sup>

⁽¹²⁾ Jiang, Z. J.; Liu, C. Y. J. Phys. Chem. B 2003, 107, 12411.

⁽¹³⁾ Caruso, R. A.; Antonietti, M. Chem. Mater. 2001, 13, 3272.

⁽¹⁴⁾ Kang, Y. C.; Lenggoro, I. W.; Park, S. B.; Okuyama, K. Mater. Res. Bull. 2000, 35, 789.

⁽¹⁵⁾ Jing, X.; Ireland, T. G.; Gibbons, C.; Barber, D. J.; Silver, J.; Vecht, A.; Fern, G.; Trogwa, P.; Morton, D. J. Electrochem. Soc. **1999**, 146, 4546.

Table 1. Experimental Conditions for the Synthesis of SiO_2 Particles with Different $Sizes^a$

SiO ₂ (nm)	C(TEOS)	$C(H_2O)$	$C(\mathrm{NH}_3)$	seeds (nm)	$V_{\rm TEOS}/V_{\rm H_2}{\rm O}$	Ν	t
300	0.17	7.5	1.0				
570	0.18	5.0	7.0				
900	0.2	5.0	7.0	500	1/2	2	3
1200	0.2	6.0	2.0	500	1/2	5	3

 $^{a}N:$ number of reaction. t: reaction time (h). C: concentration (mol/L).

obtained phosphor particles are still far from the ideally monodisperse spherical morphology.

Silica can be easily made in spherical morphology from nanometer to micrometer size.¹⁸ If the silica spheres are coated with layers of phosphors, a kind of core-shellstructured phosphor material with spherical morphology will be obtained, and the size for the phosphor particles can be controlled by the silica cores. Furthermore, because silica is cheaper than most of the phosphor materials (which often employ the expensive rare-earth elements as the activators and/or host components), the core-shell phosphor materials will be cheaper than the pure phosphor materials in unit mass. It is well-known that phosphors based on orthoborates have attracted much attention due to their high stability, low synthesis temperature, and high ultraviolet and optical damage threshold.¹⁹⁻²³ Rare-earth orthoborates have proved to be such useful host lattices for the luminescence of Eu^{3+} , which has found wide applications in Hg-free fluorescent lamps and various kinds of display devices.²⁴⁻²⁷ Among them, YBO₃, which processes the hexagonal vaterite-type structure and shows a good vacuum ultraviolet (VUV) absorption, has been a promising host material for VUV phosphors. For example, YBO₃:Eu³⁺ is currently used as a red component in PDP television. However, conventional solid-state reaction derived YBO₃:Eu³⁺ phosphors have bad morphology (large aggregates in several micrometers) due to the high annealing temperature and repeat grinding process, which will limit its dispersing stability and subsequent coating ability on the display panels.^{27b} As a result, YBO₃:Eu³⁺ phosphors with homogeneous and monodisperse spherical morphology are highly desired.

In this paper, by surface functionalization of silica particles (with size ranging from 300 to 1200 nm) with YBO₃:Eu³⁺

- (17) Celikkaya, A.; Akinc, M. J. Am. Ceram. Soc. 1990, 73, 2360.
- (18) (a) Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62. (b) Hsu, W. P.; Yu, R.; Matijevic, E. J. Colloid Interface Sci. 1993, 156, 56.
- (19) Ren, M.; Lin, J. H.; Dong, Y.; Yong, L. Q.; Su, M. Z.; You, L. P. *Chem. Mater.* **1999**, *11*, 1576.
- (20) Wei, Z.; Sun, L.; Liao, C.; Yin, J.; Jiang, X.; Yan, C.; Lü, S. J. Phys. Chem. B 2002, 106, 10610.
- (21) Bertrand-Chadeyron, G.; Mahiou, R.; El-Ghozzi, M.; Arbus, A.; Zambon, D.; Cousseins, J. C. J. Lumin. 1997, 72-74, 564.
- (22) Lou, L.; Boyer, D.; Chadeyron, G.; Bernstein, E.; Mahiou, R.; Mugnier, J. Opt. Mater. 2000, 15, 1.
- (23) Boyer, D.; Bertrand, G.; Mahiou, R. J. Lumin. 2003, 104, 229.
- (24) Kim, K. N.; Jung, H. K.; Park, H. D. J. Mater. Res. 2002, 17, 907.
- (25) Moine, B.; Mugnier, J.; Boyer, D.; Mahiou, R.; Schamm, S.; Zanchi, G. J. Alloys Compd. 2001, 323–324, 816.
- (26) Bertrand-Chadeyron, G.; El-Ghozzi, M.; Boyer, D.; Mahiou, R.; Cousseins, J. C. J. Alloys Compd. 2001, 317–318, 183.
- (27) (a) Bertrand-Chadeyron, G.; El-Ghozzi, M.; Mahiou, R.; Arbus, A.; Cousseins, J. C. J. Solid State Chem. 1997, 128, 261. (b) Boyer, D.; Bertrand-Chadeyron, G.; Mahiou, R.; Caperaa, C.; Cousseins, J. C. J. Mater. Chem. 1999, 9, 211.

Figure 1. Formation process of $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ core-shell particles with the corresponding luminescent photograph of water dispersion under 254 nm UV irradiation.

Figure 2. X-ray diffraction patterns for the 800 °C annealed pure $Y_{0.9}$ -Eu_{0.1}BO₃ powder (a), SiO₂@Y_{0.9}Eu_{0.1}BO₃ core-shell particles (b), and the JCPDS card No. 74-1929 for YBO₃ (c).

phosphor layers via a sol-gel process, we obtained a kind of core-shell-structured $SiO_2@YBO_3:Eu^{3+}$ phosphor with uniform and monodisperse spherical morphology. Detailed characterizations for the structure, morphology, and luminescent properties of the samples were performed.

2. Experimental Section

The core-shell-structured phosphor samples with general compositions as $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ were prepared by a sol-gel process. The starting materials were Y_2O_3 (99.99%, Shanghai Yuelong Nonferrous Metals Limited), Eu₂O₃ (99.99%, Shanghai Yuelong Nonferrous Metals Limited), H₃BO₃ (analytical reagent, AR, Beijing Beihua Chemicals Co., Ltd.), glycerol (AR, Beijing Beihua Chemicals Co., Ltd.), tetraethyl orthosilicate, Si(OC₂H₅)₄ (TEOS, 99%, AR, Beijing Beihua Chemicals Co., Ltd.), ammonium hydroxide, NH₄OH (25–28 wt %, AR, Beijing Beihua Chemicals Co., Ltd.), polyethylene glycol (PEG, molecular weight = 20000,

Table 2. Unit Cell Parameters and Crystallite Size for Pure $Y_{0.9}Eu_{0.1}BO_3$ Powder and Those in the SiO₂@Y_{0.9}Eu_{0.1}BO₃ Core-Shell Particles

sample	<i>a</i> (nm)	<i>b</i> (nm)	<i>c</i> (nm)	cryst size (nm)
JCPDS 16-0277 $Y_{0.9}Eu_{0.1}BO_3$ powder	0.3778 0.3782	0.3778 0.3782	0.8810 0.8810	58
$S_1O_2@Y_{0.9}Eu_{0.1}BO_3$	0.3786	0.3786	0.8786	15

AR, Beijing Beihua Chemicals Co., Ltd.), nitric acid, HNO_3 (AR, Beijing Beihua Chemicals Co., Ltd.), ethanol, C_2H_5OH (AR, Beijing Beihua Chemicals Co., Ltd.), and deionized water.

First, monodisperse silica spheres with different sizes (300, 570, 900, and 1200 nm) were prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in an alcohol medium in the presence of water and ammonia by a modified procedure of the well-known Stöber method.¹⁸ This process yielded a colloidal solution of silica particles with a narrow size distribution in submicrometer range, and the particle size of silica depended on the relative concentration of the reactants. In a typical experiment, the mixture containing TEOS (99 wt %, analytical reagent, AR), H₂O, and NH₄OH (25 wt %, AR) was stirred at room temperature for 4 h, resulting in the formation of white silica colloidal suspension. The silica particles were centrifugally separated from the suspension and washed with ethanol four times. Monosized silica particles larger than 1 μ m in diameter could not be obtained directly through the Stöber process, so seeded growth experiments were used.18b In the seeded growth experiments, a certain amount of monosize silica particles was seeded into the NH₃-H₂O-containing ethanol solution before the TEOS-containing ethanol was added to the reactor. The experimental procedure is similar to that of the Stöber process. The experimental conditions for obtaining the SiO₂ particles with size of 300, 570, 900, and 1200 nm are listed Table 1.

Second, coating of YBO₃:Eu³⁺ phosphor layers on the SiO₂ particles to obtain the core-shell-structured SiO₂@Y_{0.9}Eu_{0.1}BO₃ particles was performed by the Pechini-type sol-gel process.²⁸ According to compositions in the above formula, stoichiometric amounts of Y₂O₃ and Eu₂O₃ were dissolved in the diluted HNO₃ under vigorous stirring. Then certain amounts of H₃BO₃ compound (50 at. % of excess) and water-ethanol (1:4 v/v) solution containing glycerol (molar ratio of H₃BO₃ to glycerol 1:2) were added to the solution, followed by the addition of PEG with a final concentration of 0.1 g/mL. The solution was stirred for 3 h to form a sol, and then the obtained silica particles were added under stirring. After being stirred for 3 h, the silica particles were separated by centrifugation at a speed of 4000 rpm. The separated particles were dried at 100 °C for 1 h immediately. Then the dried samples were annealed to 800 °C with a heating rate of 2 °C/min and held there for 2 h. The above process was repeated several times to increase the thickness of the YBO₃:Eu³⁺ shells. The whole process is shown in Figure 1. The coating sol was evaporated in a similar process to produce the pure YBO₃:Eu³⁺ powder sample for comparison.

The X-ray diffractions (XRD) for the powder samples were examined on a Rigaku-Dmax-IIB using Cu K α radiation ($\lambda = 0.154\ 05\ nm$). The morphology of the samples was inspected using field emission scanning electron microscope (FE-SEM, XL30, Philips) and a transmission electron microscope (TEM, JEOL-2010, 200 kV). The excitation and emission spectra were taken on a Hitachi F-4500 spectrofluorometer equipped with a 150 W xenon

Figure 3. FESEM micrographs of the as-formed SiO₂ particles of (a) 300, (c) 570, (e) 950, and (g) 1200 nm and the (b, d, f, h) corresponding one-layer of $Y_{0.9}Eu_{0.1}BO_3$ shell coated SiO₂ particles, respectively.

lamp, 1–6 kV electron gun (self-made electron gun, 10^{-6} Pa vacuum), and 172 nm VUV lamp (self-made) as the excitation source, respectively. Luminescence decay curves were obtained from a Lecroy Wave Runner 6100 digital oscilloscope (1 GHz) using a 250 nm laser (pulse width = 4 ns, gate = 50 ns) as the excitation source (Continuum Sunlite OPO). All the measurements were performed at room temperature (RT).

3. Results and Discussion

3.1. Structure and Morphology. Figure 2 shows the XRD profiles for the 800 °C annealed pure Y_{0.9}Eu_{0.1}BO₃ powder (a) and core-shell-structured $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ (b) samples as well as the JCPDS 16-0277 card for YBO₃ (c) as the reference, respectively. Agreeing well with the XRD peaks of pure Y_{0.9}Eu_{0.1}BO₃ powder, all the diffraction peaks for the core-shell-structured SiO₂@Y_{0.9}Eu_{0.1}BO₃ sample can be indexed according to the standard data of YBO3 (JCPDS 16-0277), except for the broad band at $2\theta = 22^{\circ}$ from the amorphous SiO₂ (JCPDS 29-0085). No second phase was detected, indicating that no reaction occurred between the SiO_2 cores and the $Y_{0.9}Eu_{0.1}BO_3$ shells at the current annealing temperature (800 °C), and the sol-gel process is a suitable method to prepare SiO₂@Y_{0.9}Eu_{0.1}BO₃ core-shell particles. In general, the nanocrystallite size can be estimated from the Scherrer formula: $D_{hkl} = K\lambda/(\beta \cos \theta)$, where λ is the X-ray wavelength (0.154 05 nm), β is the full width at half-maximum, θ is the diffraction angle, K is a constant (0.89), and D_{hkl} means the size along the (*hkl*) direction.²⁹

^{(28) (}a) Yu, M.; Lin, J.; Wang, Z.; Fu, J.; Wang, S.; Zhang, H. J.; Han, Y. C. *Chem. Mater.* 2002, *14*, 2224. (b) Yu, M.; Wang, H.; Lin, C. K.; Li, G. Z.; Lin, J. *Nanotechnology* 2006, *17*, 3245. (c) Kong, D. Y.; Yu, M.; Lin, C. K.; Liu, X. M.; Lin, J.; Fang, J. *J. Electrochem. Soc.* 2005, *152*, H146. (d) Pechini, M. U.S. Patent No. 3 330 697, 1967.

Figure 4. FESEM micrographs for as-formed SiO₂ (570 nm) (a) and four-layer of $Y_{0.9}Eu_{0.1}BO_3$ shell coated 570 nm SiO₂ particles (b) as well as the TEM micrograph (c) and EDX (d) for the particles in (b).

Table 3. Calculated Bond Lengths of Y_{0.9}Eu_{0.1}BO₃ in SiO₂@Y_{0.9}Eu_{0.1}BO₃ Core-Shell Particles

			B environment (nm)					
	Y environ	ment (nm)	I			II		
sample	Y-O(1)	Y-O(2)	B-O(1)	B-O(2)	B-O(3)	B-O(1)	B-O(2)	B-O(3)
pure Y _{0.9} Eu _{0.1} BO ₃	0.2321	0.2389	0.1367	0.1466	0.1573	0.1367	0.1926	0.1889
SiO2@Y0.9Eu0.1BO3	0.2318	0.2391	0.1366	0.1468	0.1575	0.1366	0.1923	0.1892

Here we take diffraction data along the (002), (100), (102), and (104) planes to calculate the size of the nanocrystallites, and the estimated average crystallite sizes of Y_{0.9}Eu_{0.1}BO₃ are around 15 nm on the SiO₂ surfaces and 58 nm for the pure Y_{0.9}Eu_{0.1}BO₃ powders, respectively. The XRD patterns reveal the same structure of $Y_{0.9}Eu_{0.1}BO_3$ as that of YBO₃. YBO₃ has a vaterite structure with a hexagonal $P6_3/m$ space group and cell parameters a = 0.3776 nm and c = 0.8806nm. The yttrium atoms are 8-fold-coordinated with two nonequivalent environments. Boron atoms are 4-foldcoordinated with two types of BO₄ tetrahedra which are linked to each other giving rise to $(BO_3)^{3-}$ group.²⁴⁻²⁷ The refined crystallographic unit cell parameters and the bond lengths were calculated for Y_{0.9}Eu_{0.1}BO₃ on the SiO₂ surface and pure Y_{0.9}Eu_{0.1}BO₃ powder, and the results are listed in Tables 2 and 3, respectively.

Figure 3 shows the SEM micrographs of the as-prepared SiO_2 particles with different sizes (a, c, e, and g) and the corresponding $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ core—shell particles (b, d, f, and h), respectively. From the SEM micrographs, we can observe that the as-formed SiO_2 samples consist of spherical particles with an average size of (a) 300 nm, (c) 570 nm, (e) 950 nm, and (g) 1200 nm, and these particles

(29) Birks, L. S.; Friedman, H. J. Appl. Phys. 1946, 17, 687.

are nonaggregated with narrow size distribution. After functionalizing the silica particles by one-layer of $Y_{0.9}Eu_{0.1}$ -BO₃ coating, the resulted SiO₂@Y_{0.9}Eu_{0.1}BO₃ particles are still spherical and uniform, keeping the morphological properties of the silica particles as shown in Figure 3b,d,f,g, respectively.

As a representative example, a more detailed study was performed on the silica spheres of 570 nm (Figure 4a). After being coated by four layers of $Y_{0.9}Eu_{0.1}BO_3$, the average size of these particles becomes larger (700 nm, Figure 4b), and the surface of the coated particles (inset of Figure 4b) is not as smooth as the pure ones. To investigate the detailed structure of SiO₂@Y_{0.9}Eu_{0.1}BO₃ core-shell samples, TEM was performed. Figure 4c shows the SiO_2 (570 nm) particles coated by four layers of Y_{0.9}Eu_{0.1}BO₃ layers. The core-shell structure for the SiO₂@Y_{0.9}Eu_{0.1}BO₃ particles can be seen clearly due to the different electron penetrability for the cores and shells. The cores are black spheres with an average size of 500 nm (a little smaller than the as-formed pure silica particles due to high temperature annealing induced condensation of the particles), and the shells have gray color with an average thickness of 100 nm. The energy-dispersive X-ray (EDX) analysis confirms the presence of B, Y, O (from the YBO₃ shells), and Si (from the silica cores), as shown

Figure 5. Excitation (a) and emission (b, c) spectra of $SiO_2@Y_{0.9}Eu_{0.1}$ -BO₃ core-shell sample.

in Figure 4d. The Eu element was not detected due to its low concentration (but can be detected clearly from the luminescence spectra; see next part).

Finally, we explain the formation process of the coreshell-structured phosphor particles briefly. In the Pechini sol-gel process, the citric acid first formed chelate complexes with metal ions (M^{n+}) , and the left carboxylic acid groups in the citric acid reacted with polyethylene glycol to form polyester with a suitable viscosity (Figure 1). The metal ions, stabilized by the chelating and polymerizing process, were homogeneously distributed in the solution. The Stöber process-derived silica particles contained large amount of free hydroxyl groups (-OH) and silanol groups (Si-OH) on their surface.¹¹ When the silica particles in the solution were stirred, a lot of metal ions were absorbed onto the silica particles by physical and chemical interactions. After the drying and annealing process, the metal complexes decompose and react with each other to form the phosphor layers on the silica particles.

3.2. Luminescence Properties. 3.2.1. Photoluminescence Properties. Under the short UV (or VUV) light excitation, the SiO₂@Y_{0.9}Eu_{0.1}BO₃ core—shell samples exhibit a strong red emission (Figure 1). Figure 5 shows the excitation and emission spectra for SiO₂@Y_{0.9}Eu_{0.1}BO₃ core—shell particles. Monitored with the emission of Eu^{3+ 5}D₀–⁷F₁ transition at 591 nm, the obtained excitation spectrum (Figure 5a) consists of a broad intense band with a maximum at 240 nm as well as some weak lines between 300 and 500 nm. The strong band is due to the charge-transfer band (CTB) of Eu³⁺– O^{2–}, and the weak lines arise from f–f transitions within

Figure 6. PL emission intensity of Eu^{3+} in $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ samples as a function of the SiO_2 particle size.

the Eu³⁺ 4f⁶ electron configuration. The charge-transfer transition takes place because the Eu³⁺ ion (4f⁶ configuration) tends to capture an electron from the O_{2p} state to achieve a more stable configuration (half-filled shell 4f⁷ configuration).^{30,31} Excitation into the Eu³⁺ CTB at 240 nm yields the emission spectrum (Figure 5b) consisting of ⁵D₀-⁷F_J (J = 1-4) emission lines of Eu³⁺, with the magnetic-dipole transition ⁵D₀-⁷F₁ (591 nm) being the most prominent group.³² A similar emission spectrum is obtained under 172 nm VUV excitation, as shown in Figure 5c.

The luminescence properties of SiO₂@Y_{0.9}Eu_{0.1}BO₃ coreshell phosphors can be tuned by the size of silica cores and the coating numbers (layers) of $Y_{0.9}Eu_{0.1}BO_3$. Figure 6 shows the relationship of the PL intensity of $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ core-shell phosphors with the sizes of as-formed SiO₂ spheres. It can be seen clearly that the emission intensity increases with increasing the size of SiO2 spheres. It is wellknown that bigger particle size is good for the improvement of the PL intensity of phosphors.^{28b} Here, it is believed that the amount of emitting Eu³⁺ ions/SiO₂ particle will increase with the increase of SiO2 cores size, resulting in the enhancement of the PL intensity.^{28b} Also, the luminescence properties of the SiO₂@Y_{0.9}Eu_{0.1}BO₃ core-shell samples can further be tuned by the number of Y_{0.9}Eu_{0.1}BO₃ layers on the SiO₂ surface. Table 4 lists a comparison for the emission properties (integrated intensity of ${}^{5}D_{0} - {}^{7}F_{1}$ and ${}^{5}D_{0} - {}^{7}F_{2}$ and their ratios R/O; total integrated intensity ${}^{5}D_{0} - {}^{7}F_{1-4}$, and CIE (Commission Internationale de l'Eclairage1931 chromaticity) and color coordination (x, y) for one, three, and four layers of Y_{0.9}Eu_{0.1}BO₃-coated SiO₂ and the pure Y_{0.9}Eu_{0.1}BO₃ powder samples. It can be seen that the total PL intensity of SiO₂@Y_{0.9}Eu_{0.1}BO₃ core-shell phosphors increases with increasing the coating number of $Y_{0.9}Eu_{0.1}BO_3$ layers, and

- (33) (a) Zhou, Y. H.; Lin, J.; Wang, S. B. *Opt. Mater.* 2002, 20, 13. (b) Fouassier, C.; Saubat, B.; Hagenmuller, P. J. Lumin. 1981, 23, 408. (c) Zhang, T. R.; Spitz, C.; Antonietti, M.; Faul, C. F. J. *Chem.*—Eur. J. 2005, 11, 1001.
- (34) Shen, W. Y.; Pang, M. L.; Lin, J.; Fang, J. J. Electrochem. Soc. 2005, 152, 25.

⁽³⁰⁾ Nakanishi, Y.; Wada, H.; Kominami, H.; Kottaisamy, M.; Aoki, T.; Hatomaka, Y. J. Electrochem. Soc. 1999, 146, 4320.

⁽³¹⁾ Zheng, G. W.; Sun, L. D.; Liao, C. S.; Jiang, X. C.; Tao, H.; Hou, X. Y.; Jun, X. J. Appl. Phys. 2003, 93, 9783.

⁽³²⁾ Blasse, G.; Grabmaier, B. C. *Luminescent Materials*; Springer-Verlag: Berlin, Heidelberg, Germany, 1994; Chapter 4.

Table 4. Comparison of the Emission Properties (Integrated Intensity of ${}^{5}D_{0}-{}^{7}F_{1}$, ${}^{5}D_{0}-{}^{7}F_{2}$, and Their Ratios *R/O*; Total Integrated Intensity ${}^{5}D_{0}-{}^{7}F_{1-4}$, and CIE Color Coordination *x*, *y*) for One, Three, and Four Layers of Y_{0.9}Eu_{0.1}BO₃ Coated on SiO₂ and the Pure Y_{0.9}Eu_{0.1}BO₃ Powder Sample

sample	integrated intensity of ${}^{5}\text{D}_{0}-{}^{7}\text{F}_{2}\left(R\right)$	integrated intensity of ${}^{5}D_{0}-{}^{7}F_{1}(O)$	R/O	integrated intensity ${}^5D_0 - {}^7F_{1-4}$	$\operatorname{CIE}\left(x,y\right)$
SiO2@Y0.9Eu0.1BO3					
one-layer shell	1351.3	894.3	1.51	3126	(0.304, 0.255)
three-layer shell	3507.4	2890.4	1.21	8601	(0.435, 0.314)
four-layer shell	4284.3	3557.6	1.20	10283	(0.452, 0.318)
Y _{0.9} Eu _{0.1} BO ₃ powder	5940.0	4984.5	1.19	13565	(0.505, 0.337)

Table 5. Integral Intensity Ratio of the ${}^{5}D_{0}-{}^{7}F_{1}$ Transition to the Total ${}^{5}D_{0}-{}^{7}F_{j}$ (j = 1-4) [$S_{(0-1)}\Sigma S_{(0-j)}$] Transitions, Experimental ${}^{5}D_{0}$ Lifetime τ and Decay Rate k_{tot} , Calculated Radiative Rate k_{t} and Nonradiative Rate k_{nt} , and Absolute Quantum Yield η in SiO₂@Y_{0.9}Eu_{0.1}BO₃ Core-Shell Particles with One-Layer and Four-Layer Y_{0.9}Eu_{0.1}BO₃ Shells and in Y_{0.9}Eu_{0.1}BO₃ Powder Samples

			-			
sample	$S_{(0-1)} / \Sigma S_{(0-j)}$	τ (ms)	$k_{\rm tot}({\rm ms}^{-1})$	$k_{\iota} ({ m ms}^{-1})$	$k_{n\iota} (\mathrm{ms}^{-1})$	η (%)
SiO ₂ @Y _{0.9} Eu _{0.1} BO ₃ one-layer shell four-layer shell Y _{0.9} Eu _{0.1} BO ₃ powder	0.349 0.378 0.394	2.52 4.07 3.84	0.397 0.246 0.260	0.143 0.132 0.127	0.254 0.114 0.129	36.0 53.7 48.8

the emission intensity of the four-layer Y_{0.9}Eu_{0.1}BO₃-coated SiO_2 sample can reach 75% that of the pure $Y_{0.9}Eu_{0.1}BO_3$ powder sample. Obviously, this can be attributed to the increase of the thickness of Y_{0.9}Eu_{0.1}BO₃ layers on the SiO₂ cores. Additionally, the R/O value (defined as the intensity ratio of ${}^{5}D_{0}-{}^{7}F_{2}$ to ${}^{5}D_{0}-{}^{7}F_{1}$) for one-layer Y_{0.9}Eu_{0.1}BO₃coated SiO₂ sample (R/O = 1.51) is obviously larger than those for three- and four-layer Y_{0.9}Eu_{0.1}BO₃-coated SiO₂ samples (R/O = 1.20 for three layers and 1.21 for four layers of $Y_{0.9}Eu_{0.1}BO_3$), which are very close to that of the pure $Y_{0.9}Eu_{0.1}BO_3$ powder sample (R/O = 1.19). This can be explained as follows. First it should be stated that lower local site symmetry for Eu³⁺ will promote the ${}^{5}D_{0}-{}^{7}F_{2}$ hypersensitive transition probability (while 5D0-7F1 remain unchanged); thus, a higher R/O value will be obtained.²⁰ In the core-shell-structured $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ sample, the photoluminescence of Eu³⁺ contains at least two components: one comes from the (near) surface area of Y_{0.9}Eu_{0.1}- BO_3 layers and the other from inner $Y_{0.9}Eu_{0.1}BO_3$ layers. The Eu³⁺ ions on the surface have a lower symmetrical environment, which results in a higher R/O value; while the Eu³⁺ ions in the inner Y_{0.9}Eu_{0.1}BO₃ layers have a higher symmetrical environment, which results in a lower R/O value. With the increase of the coating layer thickness, the ratio of the amount of Eu³⁺ ions on the surface to that of inner layers decreases. As a result, the R/O values for Eu³⁺ in three- and four-layer Y_{0.9}Eu_{0.1}BO₃-coated SiO₂ samples are similar to that of the pure Y_{0.9}Eu_{0.1}BO₃ powder sample and smaller than that in the one-layer Y_{0.9}Eu_{0.1}BO₃-coated SiO₂ sample (one layer, $\sim 10-20$ nm, Supporting Information Figure S1; four layers, ~100 nm, Figure 4c). Moreover, if the YBO₃ shell is thin enough (for example, one layer, around 10-20nm), the Eu³⁺ ions in the interface regions (with lower local site symmetry) might be excited, resulting in a higher R/Ovalue.

The decay curves for the luminescence of Eu^{3+} (detected at 591 nm for ${}^{5}D_{0}-{}^{7}F_{1}$ transition) in core-shell-structured SiO₂@Y_{0.9}Eu_{0.1}BO₃ and pure Y_{0.9}Eu_{0.1}BO₃ samples are shown in Figure S2 [Supporting Information, (a) for one layer and (b) for four layers of Y_{0.9}Eu_{0.1}BO₃ and (c) for pure Y_{0.9}-Eu_{0.1}BO₃, respectively]. In general, all the decay curves in Figure S2 can be fitted by a single-exponential function as $I(t) = I_0 \exp(-t/\tau)$ (where I_0 is the initial intensity for t = 0 and τ is the lifetime), and the lifetimes of Eu³⁺ (⁵D₀ lowest excited state) are determined to be 2.52 ms for one-layer Y_{0.9}Eu_{0.1}BO₃ (on SiO₂), 4.07 ms for four-layer Y_{0.9}Eu_{0.1}BO₃ (on SiO₂), and 3.84 ms for the pure Y_{0.9}Eu_{0.1}BO₃ powder sample, respectively.

Because of the invariability character for the intensity of ${}^{5}\text{D}_{0}{}^{-7}\text{F}_{1}$ transition of Eu³⁺, it can be taken as a reference for the calculation of the luminescent quantum yield of Eu³⁺.^{35,36} On obtaining the intensity parameters of the Eu³⁺ emission spectrum, the total radiative rate of ${}^{5}\text{D}_{0}$ can be expressed by eq 1, where $k_{\iota(0-1)}$ is the radiative rate of the ${}^{5}\text{D}_{0}{}^{-7}\text{F}_{1}$ transition.^{37,38} Since in vacuum, $[k_{\iota(0-1)}]_{\text{vac}} = 14.65$ s⁻¹, when an average index of refraction *n* equal to 1.506 was considered, the value of $k_{0-1} = n^{3}[k_{\iota(0-1)}]_{\text{vac}} \approx 50 \text{ s}^{-1}$ and $S_{(0-j)}$ are the integral intensities of the ${}^{5}\text{D}_{0}{}^{-7}\text{F}_{j}$ and ${}^{5}\text{D}_{0}{}^{-7}\text{F}_{1}$ transitions, respectively:^{36,37-42}

$$k_i = k_{\iota(0-1)} \frac{\sum_{j=0}^{4} S_{(0-j)}}{S_{(0-1)}}$$
(1)

The related data for Eu³⁺ in SiO₂@Y_{0.9}Eu_{0.1}BO₃ (onelayer, four-layer) and in the pure Y_{0.9}Eu_{0.1}BO₃ powder samples are listed in Table 5. From these data, the total decay rate of ⁵D₀ (K_{tot}) can be calculated according to eq 2, and the quantum yield (η) values can be estimated by eq 3. The quantum yield values seem low considering that the material

- (35) Naber, R. C. G.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; de Leeuw, D. M. *Adv. Mater.* **2005**, *14*, 2692.
- (36) Peng, C.; Zhang, H.; Yu, J.; Meng, Q.; Fu, L.; Li, H.; Sun, L.; Guo, X. J. Phys. Chem. B 2005, 109, 15278.
- (37) Yamase, T.; Kobayashi, T.; Sugeta, M.; Naruke, H. J. Phys. Chem. A 1997, 101, 5046.
- (38) Carlos, L. D.; Messadeq, Y.; Brito, H. F.; Sa-Ferreira, R. A.; de Zea Bermudz, V.; Ribeiro, S. J. L. Adv. Mater. 2000, 12, 594.
- (39) Sugeta, M.; Yamase, T. Bull. Chem. Soc. Jpn. 1993, 66, 444.
- (40) Werts, M. H. V.; Jukes, R. T. F.; Verhoeven, J. W. Phys. Chem. Chem. Phys. 2002, 4, 1542.
- (41) Hazenkamp, M. F.; Blasse, G. Chem. Mater. 1990, 2, 105.
- (42) Ribeiro, S. J. L.; Dahmouche, K.; Ribeiro, C. A.; Santilli, C. V.; Pulcinelli, S. H. J. J. Sol-Gel Sci. Technol. 1998, 13, 427.

Figure 7. CL emission spectrum $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ core-shell sample (accelerating voltage = 3 kV; current = 17 mA).

generally leads to high quantum yields for this rare earth ion. This may be due to the concentration quenching effect. It should be noted that eq 3 describes the quantum efficiency of the Eu^{3+ 5}D₀ level and not the absolute emission quantum yield of the samples. The absolute emission quantum yield is a more general quantity that involves the ratio between the light absorption and the light emission. Therefore, the absolute emission quantum yield and the quantum efficiency of the ⁵D₀ level are equal, if all the energy absorbed is transferred to the ⁵D₀ level.

$$k_{\rm tot} = \frac{1}{\tau} = k_{\iota} + k_{n\iota} \tag{2}$$

$$\eta = \frac{k_{\iota}}{k_{\iota} + k_{n\iota}} \tag{3}$$

Although the above calculation for the quantum yield is not very accurate, it tells us that the $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ (fourlayer) core-shell sample is comparable to the pure $Y_{0.9}Eu_{0.1}-BO_3$ powder in optical performance.

3.2.2. Cathodoluminescence Properties. The cathodoluminescence (CL) of the above core-shell phosphors was also investigated. Figure 7 shows the CL spectrum of the $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ core-shell sample, which is similar to the corresponding PL emission spectra in Figure 5. The CL emission intensities for four-layer SiO₂@Y_{0.9}Eu_{0.1}BO₃ coreshell samples have been investigated as a function of accelerating voltage and filament current, as shown in Figure 8a,b, respectively. When the filament is fixed at 14 mA, the CL intensity of the core-shell samples increases with raising the acceleration voltage from 2 to 6 kV (Figure 8a). Similarly, under 3 kV electron beam excitation, the CL intensity of the core-shell samples also increases with increasing the filament current from 14 to 18 mA (Figure 8b). For cathodoluminescence, the Eu³⁺ ions are excited by the plasma produced by the incident electrons. The electron penetration depth can be estimated by

$$L(\text{\AA}) = 250 \left(\frac{A}{\rho}\right) \left(\frac{E}{Z^{1/2}}\right)^n \tag{4}$$

where $n = 1.2/(1 - 0.29 \log_{10} Z)$, A is the atomic weight, ρ is the density, Z is the atomic number, and E is the

Figure 8. CL emission intensity of Eu^{3+} as a function of accelerating voltage (a) and filament current (b) in $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ core-shell sample.

accelerating voltage (kV).43-45 For Y_{0.9}Eu_{0.1}BO₃, the calculated electron penetration depth at 5 kV is 3.8 nm. This value is within the $Y_{0.9}Eu_{0.1}BO_3$ shell thickness for the SiO₂@Y_{0.9}-Eu_{0.1}BO₃ core-shell particles. With the increase of accelerating voltage, more plasma will be produced by the incident electrons, resulting in more Eu³⁺ being excited and higher CL intensity. The increase in electron energy is attributed to deeper penetration of electron into the shell which is governed by eq 4. The deeper penetration of electrons in the shell results in an increase in electron-solid interaction volume in which excitation of Eu³⁺ ions is responsible for the light emission. Therefore, an increase in interaction volume (which effectively determines the generation of light inside the shell) with an increase in electron energy brings about an increase in CL brightness of SiO₂@Y_{0.9}Eu_{0.1}BO₃ core-shell particles.46

4. Conclusions

Spherical core-shell-structured SiO₂@Y_{0.9}Eu_{0.1}BO₃ particles with different sizes were successfully prepared by a sol-gel process followed by annealing at high temperature. Under UV light, 172 nm VUV light and 1–6 kV electron gun excitation, the Eu³⁺ ions show their characteristic orangered (${}^{5}D_{0}{}^{-7}F_{1}$) emissions in crystalline SiO₂@Y_{0.9}Eu_{0.1}BO₃ core-shell phosphor samples. The luminescence properties

- (44) Wang, H.; Lin, C. K.; Liu, X. M.; Lin, J.; Yu, M. Appl. Phys. Lett. 2005, 87, 181907.
- (45) Feldman, C. Phys. Rev. 1960, 117, 455.
- (46) Kumar, D.; Cho, K. G.; Chen, Z.; Craciun, V.; Holloway, P. H.; Singh, R. K. Phys. Rev. B 1999, 60, 13331.

⁽⁴³⁾ Bette, H. A. Ann. Phys. (Leipzig) 1930, 5, 325.

SiO₂@YBO₃:Eu³⁺ Spherical Particles

of $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ core—shell phosphors can be tuned by the size of silica cores and the coating numbers (layers) of $Y_{0.9}Eu_{0.1}BO_3$. The PL intensities of $SiO_2@Y_{0.9}Eu_{0.1}BO_3$ increase with increasing the coating numbers and the size of as-formed SiO₂, and the CL intensities increase with increasing the filament current and accelerating voltage. The advantages of the core—shell-structured phosphors prepared by this process include the easy availability of homogeneous spherical morphology in different size and its wide practicality for other phosphor materials, which have great potential for application in displaying and lightening fields.

Acknowledgment. This project is financially supported by the foundation of "Bairen Jihua" of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grants 50225205, 50572103, 20431030, 00610227), and the MOST of China (Grant No. 2003CB314707). M.Y. is grateful for the special starting research fund for the Awardees of President Prize of Chinese Academy of Sciences (2005–2007).

Supporting Information Available: TEM micrograph for onelayer $Y_{0.9}Eu_{0.1}BO_3$ -coated SiO₂ particles (Figure S1) and decay curves for the luminescence of Eu^{3+} (Figure S2). This material is available free of charge via the Internet at http://pubs.acs.org.

IC062318J